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Zusammenfassung

Reactive Programming hat in den letzten Jahren in der akademischen Welt sowie in der Indus-
trie mehr und mehr Aufmerksamkeit erlangt. Verglichen mit traditionellen Techniken hat sich
Reactive Programming als effektiver erwiesen, um leichter zu verstehende und besser wartbare
Systeme zu implementieren. Leider gibt es momentan aber keine angemessene Tool Unterstiit-
zung bei der Entwicklung — vor allem im Hinblick auf den Debugging Prozess. Das Ziel dieser
Abschlussarbeit ist es daher, den Debugging Prozess von reaktiven Systemen zu verbessern.

Wir prasentieren einen auf Reactive Programming spezialisierten Debugger. Dieser basiert auf
dem Abhéngigkeitsgraphen von reaktiven Werten und ist von fortgeschrittenen Debugging Tools
wie allwissenden Debuggern inspiriert. Mit dem présentierten System kann der Entwickler den
Abhédngigkeitsgraphen eines reaktiven Programms nicht nur zu einem bestimmten Zeitpunkt
visualisieren, sondern auch frei in der Zeit navigieren. Eine domé&nenspezifische Abfragespra-
che bietet direkten Zugriff auf die Historie des Graphen, sodass man direkt zu interessanten
Zeitpunkten springen kann. Diese Sprache hilft auch dabei, reactive-programming-spezifische
Breakpoints zu implementieren. Das sind Breakpoints, die die Ausfiihrung unterbrechen, sobald
der aktuelle Programmstatus zu einer, vom Entwickler eingegebenen Abfrage passt.

Eine erste, auf verschiedenen Code-Beispielen basierende Auswertung zeigt, dass der entwi-
ckelte Debugger beim Verstehen reaktiver Systeme und dem schnellen Finden von Fehlern hilft.
Vor allem {iibertrifft die in der Arbeit prasentierte Losung traditionelle Debugger, da Abstraktio-
nen von Reactive Programming direkt unterstiitzt werden.




Abstract

Over the last few years, reactive programming has gained more and more attention in academia
and industry. Compared to traditional techniques, reactive programming has proved to be more
effective to implement systems that are easier to understand and more maintainable. Unfortu-
nately, there is no proper development tool support for the time being — especially in relation to
the debugging process. The aim of this thesis is to enhance the debugging process of reactive
systems.

We present a specialised debugger for reactive programming. The debugger is based on the
dependency graph among reactive values and is inspired by advanced debugging tools, such as
omniscient debuggers. In the system presented in this thesis, the dependency graph of a reac-
tive software cannot only be visualised at a specific point in time, as the developer can navigate
freely back and forth in time. A domain-specific query language provides direct access to the
graph history, so that one can jump to interesting points in time. This language also helps in im-
plementing reactive-programming-specific breakpoints. These are breakpoints, which interrupt
the execution when the query provided by the developer matches.

A first evaluation based on various code examples shows that the developed debugger helps
understanding reactive systems and finding bugs quickly. Especially, the solution presented in
this thesis outperforms traditional debuggers as it directly supports reactive language abstrac-
tions.
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1 Introduction

Reactive languages, such as FrTime, Flapjax, Scala.React or REScaLa get and deserve more and
more attention, because they provide advanced mechanisms for developing reactive systems.
Unfortunately, nearly all of them lack proper tool support — especially with regard to the de-
bugging process. Hence, systems based on reactive programming are currently very hard to
overview and bugs are very hard to find. This can of course lead to the situation that not many
developers venture to use reactive programming. This thesis is another step towards usable
debugging support for reactive programming, so that these problems may be solved in the near
future.

This chapter introduces the whole topic with some background information, which will later
be extended in the second chapter. The second section gives a little motivation, why better
debugging support for reactive programming is necessary. The third section summarises the
achieved contributions and the last section describes the structure of this thesis.

1.1 Background

Transformational systems do not need to react to changing inputs — traditional batch processes,
such as compilers are an extreme example. In contrast to that, many modern systems are
reactive, update their internal state according to the input and continuously interact with their
environment. Changes in depending systems, changes of the environment or changes by the
user can all lead to changes in the system. Users expect that modern systems react to these
changes in no time and always reflect the current inputs. These systems are often referred to as
reactive systems.

There are many different possibilities to implement reactive systems with different advantages
and drawbacks. Roughly, in ascending attractiveness, these are the observer pattern, event-
driven programming (EDP), aspect-oriented programming (AOP) as well as reactive languages.
The most modern and advanced possibility is the usage of reactive languages. Hence, many
reactive languages have been developed in the past years. FrTime [CK06], Flapjax [MGB"09],
Scala.React [MO12] or REScara [SHM14] are just some examples.

The main idea of reactive languages or reactive programming is to provide language-level
support for continuous changes to which the application has to react. This means that reactive
languages provide the possibility to define so-called time-changing values. A traditional vari-
able definition, such as ¢ = a + b would be evaluated exactly once when this specific line is
executed. If the same variable definition is somehow marked as time-changing, it would rather
be interpreted as a constraint instead of a definition. There would be a dependency between c
and the variables a and b, so that each time a or b changes, ¢ would also be re-evaluated and
would instantly reflect the recent input changes. These dependencies can also be visualised in
a dependency graph, where each variable is a node and each dependency is represented by a
directed edge. An example for a dependency graph of the aforementioned example is shown in
Figure 1.1.




Figure 1.1.: Dependency Graph of a Reactive Application

The advantages of designs based on reactive languages over designs based on the observer
pattern have often been discussed [CK06, MGBT09, MO12, BCC"13]. For instance, the usage of
reactive languages leads to much less boilerplate code. Another example is that it is less error-
prone, because updates do not need to be performed manually, but are automatically executed
by the language.

Although the general advantages are obvious, it has not been evaluated until this year what
the impact of reactive programming on the program comprehension is. But indeed both, prelim-
inary empirical results and the first full empirical evaluation show that the program comprehen-
sibility is enhanced by reactive programming [SM14, SAPM14]. Hence, further development in
this topic seems to be worthwhile.

Besides the enormous academic interest in reactive programming, the topic also gains rising
attention in the economy. An example for this is the “reactive manifesto”, a document which de-
fines criteria for reactive applications [Aut13]. Although it is written by many authors, the main
authors have an economic and not academic background. The company Typesafe Inc. can be
perceived as its initiator. The reactive manifesto claims that reactive applications have to be re-
sponsive, scalable, resilient and event-driven. These are the so-called reactive traits and should
be understood as “design properties that apply across the whole technology stack” [Aut13].
They should not be understood as single, mutually-exclusive properties, but as connected, in-
terrelated ones. Even though some of the reactive traits just seem to be present for marketing
reasons, the reactive manifesto shows that reactive programming has arrived in the economy.

1.2 Motivation

Reactive programming is still in its infancy, so that there is actually no good tool support for it.
There is especially no debugging support for it at all. And this is something which is extremely
important for reactive programming. In reactive applications, changes at one place can result in
changes at various different places. If a value changes, all depending values will also be updated
automatically. This is something special to reactive programming, so that specialised debuggers
are desirable.

Thinking about debugging, traditional breakpoint- or log-based debuggers are the first ones
which come to mind. Breakpoint-based debuggers are based on the usage of line or method
breakpoints. The developer creates breakpoints based on a specific line in the source code or
on a specific method and the debugger will halt the execution once this point in the code is
reached. Log-based debuggers are based on logging of all relevant events to a log file during
the code execution and analysing this log file afterwards.

A more advanced debugging technique is omniscient debugging, also known as back-in-time,
backwards, historical or reversible debugging. The idea is that one cannot only look at the
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current program state and go forward step-by-step, but that one can have a look at the pro-
gram state at any arbitrary time. It is also possible to go back in time during the debugging
process. This is extremely comfortable and useful. A very good and easy-to-use example for
such a debugger is the Elm debugger . A proof-of-concept Eclipse plugin which implements an
omniscient debugger for Java has also been developed by Pothier et al. [PTP07, PT09].

Although advanced debugging techniques, such as omniscient debugging exist, traditional
debuggers are still commonly used and advanced debuggers are not built into modern IDEs.
Additionally, the special needs when debugging systems based on reactive programming cannot
be covered by traditional debuggers. A usable alternative providing debugging support for
reactive programming does not exist yet. That is why there is a great need to investigate how
better debugging support for reactive programming could look like and to develop appropriate
tools.

1.3 Contribution

In the previous sections we introduced reactive systems, their implementation via reactive lan-
guages, the possibility to visualise them with dependency graphs, omniscient debugging as well
as the great need for better debugging support for them. In this thesis, all these concepts are
combined: the goal is to develop a debugger which can visualise the dependency graphs of
reactive systems and provides the possibility to freely navigate through the history of these de-
pendency graphs. In other words, an omniscient debugger for the dependency graphs of reactive
systems should be developed.
In more detail, the contributions of this thesis are the following:

* It provides the possibility to visualise dependency graphs of reactive systems. Most notably,
the whole history of the dependency graph is stored during the program execution and the
facility to view the dependency graph at any point in time is provided.

* The history of the dependency graph cannot only be navigated manually, but can also be
queried with the help of a domain-specific query language. This query language provides
the opportunity to directly jump to important points in time of the dependency graph
history.

» With the help of this query language, reactive-programming-specific breakpoints are im-
plemented. These breakpoints provide the facility to halt the program execution directly
when an interesting event occurred during the execution.

1.4 Structure

The thesis is structured in six chapters. Chapter 1 provides a short introduction into the topic
and describes the goals of the thesis. Chapter 2 includes more background information and
presents the state of the art of the important topics of this thesis: reactive systems in general,
the various ways to implement them — especially reactive languages —, the problems when de-
bugging them, advanced debuggers and REClipse — a first attempt to provide debugging support
for reactive programming. The third chapter describes the system on a high-level and the design

1 http://debug.elm-1lang.org/, last accessed 24-09-2014



http://debug.elm-lang.org/

decisions that have been made. The requirements for the system are again explained in more
detail. The fourth chapter explains the system on a lower level and more fine-grained. Interest-
ing, selected implementation details are shown. Chapter 5 shows various case studies, evaluates
the developed system and illustrates its usage as well as possible applications. Chapter 6 then
concludes the thesis and outlines ideas for future work.
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2 State of the Art

This chapter presents the state of the art of the topics relevant for this thesis. In the first section,
we introduce reactive systems and the challenges in implementing them. The second section
explains different implementation possibilities. Reactive programming languages in general
and a specific reactive language which integrates seamlessly into an object-oriented setting —
namely REScaLa- is described in the third section. Afterwards, the serious existing problems
with the debugging of reactive systems are explained in the fourth section. A possible solution
for these debugging problems based on advanced debuggers, particularly omniscient debuggers,
is then introduced in the fifth section. The chapter finishes with an introduction to the already
implemented Eclipse plugin which visualises reactive programs.

2.1 Reactive Systems

A traditional taxonomy classifies computing systems in transformational systems and reactive
systems. Transformational systems receive some input, perform computations, return an output
and terminate. Hence, the use of state is not essential. The different inputs and computations
just lead to updates of the internal data structures:

S

In contrast to that, reactive systems continuously interact with their environment. They con-
tinuously update their state each time some event is fired and processed — the state is therefore

essential to describe them:
[State continuously upda\te@

2.1.1 Challenges in Implementing Reactive Systems

Implementing reactive systems is difficult because of the interaction between state and updates.
Consider the following simple code, with which the basic principle of reactive systems can be
explained.

val a =1
var b =1
val c = a + b
b=>5

println (c)

1



One would expect the output to be 2. And this is indeed the way traditional programming
approaches work. Setting the value of variable b to 5 will not affect the value of variable c,
because c¢ has been defined before. In reactive systems, line 2 would rather be interpreted as
a constraint instead of an assignment, so that the output in the end would be 6. The value of
variable c will always be updated once a or b change their values. This is comparable with the
way spreadsheet applications, such as Microsoft Excel work. The content of a cell depending on
other cells will always be instantly updated once one of the cells it depends on is changed.

But how can such a reactive system be implemented? A manual approach would probably
look similar to the following code:

val a =1

var b =1

var c = a + b
b=>5
bHasBeenUpdated ()

println (c)

def bHasBeenUpdated () A
// recalculate c, so that change of b is reflected
c=a+b

by

This naturally leads to a lot of problems:

* The code which triggers updates, such as the call of bHasBeenUpdated above is scattered
throughout the system. After each update of b, the triggering code has to be inserted.

* Developers may forget to insert the triggering code, so that important updates may be
missed.

* Update code is executed defensively, so that it may be executed too often. The reason for
it is that each change calls the update code, although changes may be combined and only
one update may be necessary.

* It is not possible to compose different reactions. One cannot express new constraints based
on existing ones.

* There is no separation of concerns. The update logic, the constraint definition as well as
the triggering code are all tangled.

* There is a lot of boilerplate code just to define a simple constraint. In the example above,
50 % of the code is required just to express that ¢ = a + b is a constraint which should
always hold. This unnecessary code duplication is not desirable, makes the code less read-
able, less comprehensible and less maintainable.

2.2 Implementation of Reactive Systems

Apart from the unsatisfactory manual approach, there are multiple ways how reactive systems
can be implemented. Initially, in this section “traditional” approaches, such as the observer
design pattern, event-driven and aspect-oriented programming are surveyed. The next section
focuses on reactive languages which are a central topic for the thesis.
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Subject
Observer # observerCollection
- + registerObserver(Observer)
+ notify ) + unregisterObserver(Observer)
# notifyObservers()
«method» notifyObservers()
ConcreteObserver for (observer in observerCollection)
observer.notify()

+ notify()

Figure 2.1.: Class Diagram of the Observer Pattern

2.2.1 The Observer Pattern

The observer pattern as a way of reacting to changes is well-known and is one of the first
patterns every developer learns. It was first named in the famous book “Design Patterns: Ele-
ments of Reusable Object-Oriented Software” from the so-called “Gang of Four” [GHJV94]. As
a refresher, a class diagram is depicted in Figure 2.1. The drawbacks of the observer pattern
have already been broadly discussed in literature resulting in a paper “Deprecating the Ob-
server Pattern”, which explains the problems in detail and proposes built-in support for reactive
programming abstractions as a solution [MRO10]. Nearly all of the aforementioned problems
remain when using the observer pattern instead of the manual approach. There is only one real
advantage: through the observer pattern, a better modularity is achieved. The update code is
decoupled from the code that changes a value. This makes the code more readable and less
error-prone.

2.2.2 Event-Driven Programming (EDP)

Programming languages are event-driven if they support events on the language-level. Ex-
amples for event-driven languages are C# [ISO06], EScaLa [GSM*11], Ptolemy [RLO8] or
EventJava [EJO9]. These languages support imperative, single events as well as declarative
events which are composed of other events. An example for a declarative event would be
declarativeEvent = eventl || event2, which would be fired each time event1 or event2 is
fired. Event handlers, which are called each time an event is fired, can be registered for all kinds
of events and can perform their updates. The following EScara example from the introductory
paper shows how the code with such an event-based language could look like [GSM*11]:

class Drawing(val figures: List[Figure]) {
// event which is fired each time one of the figures is invalidated
event invalidated = figures.any(_ .invalidated)

by

class View(val drawing: Drawing) A
// attaches an event handler to the invalidated event of the given

13



// Drawing instance
drawing.invalidated += repaint
def repaint(bounds: Rectangle) { // update code }

¥

Event-based languages are advantageous compared to the observer pattern, since events are
composable and the update code can be modularised and separated from the main code. Ad-
ditionally, there is usually less boilerplate code necessary in event-based languages. But some
drawbacks of the observer pattern remain: for instance, event handlers have to be registered
manually, so that the dependencies are still encoded manually. Additionally, handlers still have
to implement the updates explicitly — updates are not performed automatically.

2.2.3 Aspect-Oriented Programming (AOP)

Aspect-Oriented Programming has been introduced in 1997 by Kiczales et al. [KLM*97]. With
AORB it is possible to define points in the code at which some update code should be executed.
These so-called pointcuts are based on events like the following:

* call of a method
* begin/end of a method execution
* begin/end of a constructor execution

* execution of an exception handler

They can usually be combined with logical operators to form more complex pointcuts. An
example of a pointcut in the Java AOP library AspectJ ! is the following:

call(int MyClass.myMethod(int))

It matches each call to a method myMethod of the class MyClass, which takes an int as a param-
eter and returns an int again. The update code which is executed each time a pointcut matches
is called advice. The pointcut together with the respective advice is called aspect, which justifies
the name of this paradigm.

Like EDB AOP is advantageous compared to the observer pattern, because events are compos-
able, update code can be separated from the main code and less boilerplate code is necessary.
Comparing EDP and AOB they can express different things. With EDB it is natively not possi-
ble to run some update code each time specific methods are called. Although more specific,
application-related events can be expressed with EDP more easily. AOP has the same drawbacks
as EDB e.g. that dependencies are encoded manually. That is why reactive languages have been
developed, which are introduced in the next section.

2.3 Reactive Languages

Reactive languages try to solve all the problems of the aforementioned paradigms. The rationale
is that the updates are not executed via events and handlers, but automatically by the respective
language. Once a constraint is defined, the language takes care of updating all dependent values
each time a change occurs. Recapitulate the simple example from the beginning of the chapter:

1 https://eclipse.org/aspectj/, last accessed 24-09-2014
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val a =1
var b =1
val c = a + b
b=25

println (c)

In a reactive language, one could just define the variable c as a time-changing value. This would
mean that it is instantly updated each time a or b change their values. The output in the example
would therefore be 6.

The first reactive language was Fran, an abbreviation for “functional reactive animation”,
and was implemented as a Haskell library [EH97]. It is often referred to as functional re-
active programming (FRP). Examples for more recent reactive languages are FrTime [CK06],
Flapjax [MGB*09] or Scala.React [MO12]. The following Scala.React example based on the
introductory paper gives an impression on how reactive languages look like and work [MO12]:

object MyApp extends Observing {
// quit event is fired when user quits the application via a quit
// button or via the menu or when a fatal exception is thrown
val quit: Events[Any] = quitButton.clicks merge
quitMenu. click merge fatalExceptions
def doQuit() {
// do something before application exits
System . exit ()
by
// each time quit event is fired, doQuit will be executed
observe (quit) { doQuit() }
by

All the aforementioned languages have a declarative approach based on functional program-
ming, so that they do not fit in well with the object-oriented world. REScaLa is a first step
towards integrating reactive behaviour as known from FRP into the object-oriented domain.
REScaLa will be described in the next section in more detail, because it has been mainly used in
this thesis.

2.3.1 REScala

REScaLa is a library developed by Guido Salvaneschi et al. which extends Scala to a reactive
language [SHM14]. In REScaLa, there are two types of reactive values: Vars and Signals.
Vars wrap primitive Scala values and define them as time-changing values. Examples of Var
definitions are:

e val a: Var[Int] = Var(10)
* val b: Var[String] = Var("a string')
e val c: Var[Boolean] = Var(true)

The notation for changing the value of the variable a as defined aboveisa() = 20 or a.set(20).
Signals wrap side-effect-free Scala expressions and define them as time-changing expres-
sions. Examples of Signal definitions based on the Var definitions above are:

15



* val sl: Signal[Int] = Signal { a() + 1 }
* val s2 = Signal { if (c()) a(Q) else b }

REScaLa also supports two kinds of events. Imperative events are defined by the developer
via e.g. val e = new ImperativeEvent[Int]() and are also fired manually by the developer
via e.g. e(10). Declarative events are composed of other events with combination operators
like logical operators. An example would be val e = el || e2, which defines a new event e
which is fired each time the event el or e2 is fired. There are also more complex combination
operators, such as map. The event e map f is fired each time the event e is fired. But the event
e map f will call the function f on the parameter of the base event e, so that the parameter type
of the new event is the return type of the map function.

An event handler h for an event e can be registered and unregistered at any time via e += h
or e -= h respectively.

REScaLa provides conversion functions which easily convert Signals to events and
vice versa. The basic conversion function which converts events to Signals is latest:
val s: Signal[Int] = e.latest(l). It returns a Signal which always holds the latest value
of the event. The parameter defines the initial value of the Signal. In the other direction,
the function is called changed: val e: Event[Int] = s.changed. It returns an event which
is fired each time the value of the Signal s changes. There are also more complex conversion
functions which are introduced in detail in the REScaLa manual 2.

These conversion functions are key to introduce time-changing values into object-oriented
applications, which are usually event-based. So this is one of the main advantages of REScALA:
it can, as opposed to other reactive languages, seamlessly be integrated into object-oriented
applications.

A fully-fledged REScaLa example, which will also be used later on, is the following Fibonacci
example:

import rescala.
import makro.SignalMacro.{ SignalM => Signal }

object Fibonacci extends App {

val f1 = Var(1)
val f2 = Var(1)

val f3 = Signal { f1() + f2() }
val f4 = Signal { f2(0) + f3() }
val f5 = Signal { f3 () + f4() }
val f6 = Signal { f4() + f5() }
val f7 = Signal { f5(0) + f6() }
val f8 = Signal { f6 () + f7() }
val f9 = Signal { f7() + f8() }

val f10 = Signal { f8(0) + f9(0) }
println (f10. get)

https://raw.githubusercontent.com/guidosalva/REScala/master/doc/manual /manual.pdf, last ac-
cessed 24-09-2014
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Figure 2.2.: Dependency Graph of a Very Simple Example Application

2.4 Debugging Reactive Programs

Debugging reactive programs can be a tedious task. While programs written in traditional, non-
reactive languages can be tracked step-by-step rather easily with a breakpoint-based debugger;
this is not possible with reactive programs. Assumed a reactive program would be tracked step-
by-step, what should the debugger do when a value on which many other values depend is
updated? Should it just skip the updates? This would not represent the inner workings at all
and would skip important steps. On the other hand, switching from one update statement to the
next would also be quite confusing. Since updates can trigger other updates, countless values
would potentially have to be updated. Understanding and overseeing all these steps would
probably not be possible. Hence, new tools have to be developed, which let developers oversee
and understand reactive programs. One important aspect of this are dependency graphs. One
can think of values as nodes in a graph and the dependency relation between two nodes as a
simple directed edge from one node to another. The following code block has a dependency
graph as depicted in Figure 2.2.

val a =1
val b =1
val ¢c = a + b

There may be many dependency graphs in a reactive application, since there are normally
many independent components. Inspecting these graphs will result in a good overview of a
specific component of an application. This becomes even more powerful when it is combined
with advanced debuggers, which are described in the following section.

2.5 Advanced Debugging

Advanced debuggers provide additional functionality to debug programs than the traditional
breakpoint- or log-based debuggers. The advanced debugging technique, which is important
for this thesis, is omniscient debugging. Though omniscient debugger seems to be the most
prevalent term for this kind of debuggers, there are other equivalent terms, such as back-in-
time, backwards, historical or reversible debugger. They not only let the developer step forward
through the program, but also allow to go back in time. Hence, the developer can have a look at
the state of the program at arbitrary points in time. This idea has first been formulated by Balzer
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Figure 2.3.: Example of Debugging in National Instruments LabVIEW [Ins14]

in the year 1969 [Bal69]. So the idea is anything but new. Proof-of-concept systems have also
been developed as early as 2003 [Lew03]. Nevertheless, there is no proper default integration
of omniscient debugging into state-of-the-art IDEs. At least plugins which integrate the idea of
omniscient debugging into IDEs such as Eclipse exist [PTP07, PT09].

The big benefit of omniscient debuggers is that they combine the advantages of log-based and
breakpoint-based debuggers. Log-based debuggers have the advantage that the past program
state is never lost — the developer knows how the program state was in the past. Breakpoint-
based debuggers have the advantages that the developer can navigate interactively forward
through the code execution and can have a look at the stack content at a specific point in time.
Omniscient debuggers have all these advantages combined and are therefore quite worthwhile.

One of the main goals of this thesis is to apply omniscient debugging to the dependency graph
of reactive programs. This gives the developer the possibility to temporally navigate back and
forth the dependency graph. The developer can then track a whole lot of events:

* when nodes are created (which means when variables have been defined)

when connections between nodes are created (which means when a constraint and there-
fore a dependency has been defined between two variables)

¢ when nodes/variables are evaluated

how updates of variable values are passed through the program and affect other variables

A quite similar visualisation, which indeed does not allow backwards navigation, is integrated
into National Instruments LabVIEW [Ins14]. LabVIEW is a graphical programming platform
which allows engineers to build measurement or control systems based on physical instruments.
Inputs can be easily connected with various computing units in order to build more complex
system. So as to debug the system, the graphical visualisation can be observed while it is
executing. The developer can see how different input signals are passed through the system
and how they affect other parts of the system. An example of such a visualisation is depicted in
Figure 2.3.
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2.6 A First Attempt: REClipse Eclipse Plugin

Michael Hausl has, as part of his diploma thesis, developed an Eclipse plugin called REClipse
which can already show dependency graphs for reactive applications [Haul4]. It is written in a
programming language independent way, so that various reactive programming languages can
be connected to this visualisation plugin. In order to connect another reactive language, an
Eclipse plugin has to be developed. In the plugin, a specific interface has to be implemented
and provided via a specific extension point. Then, the base visualisation plugin can detect the
new implementation and is able to visualise programs of the new language.

An example visualisation of REClipse is shown in Figure 2.4. Different layout algorithms can
be chosen in order to get a different graph layout. Additionally, nodes can freely be rearranged
via drag and drop. The resulting graph can then also be saved to a file. Internally, the plugin
uses reflection in order to get the runtime information of the variables. This information is then
shown as an overlay each time the developer hovers over the respective node.

REClipse is used as a basis for this thesis and is extended to support omniscient debugging.
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3 System Design

In this chapter, we introduce the high-level requirements for the system developed in the thesis.
Then, a high-level architectural overview of the system is given in the second section. Finally,
we explain the design choices, such as the usage of the Eclipse plugin architecture or the usage
of complex event processing in more detail.

3.1 System Requirements

The requirements for the system developed in the thesis are identified according to the general
idea that the dependency graph visualisation and history improves the debugging process of
reactive systems. We identified the following requirements expressed in terms of functionalities
available to the end user and requirements on the software architecture.

General Availability

The new debugging functionality should seamlessly fit into an existing IDE and should be
easy to install and integrate. Therefore, and in order to reach many developers, a plugin for the
widely used Eclipse IDE should be developed.

Visualisation of the Dependency Graph

During the debugging process, the developer should be able to see the dependency graph
based on a specific time-changing variable. Once a variable is selected, this variable and all its
dependencies should be shown in a graph, so that the developer gets a good overview of the
system. While stepping through the program, the graph should be automatically updated, so
that new variables, new dependencies, updated values and so forth are directly visible.

Visualisation of the History of the Dependency Graph

The developer should be able to have a look at the dependency graph at any arbitrary point
in time. Hence, the whole history of the dependency graph should be visualised. It should be
possible to easily navigate through the time and to observe events, such as node creation, value
changes, updates of dependencies and the like step-by-step.

Querying the History of the Graph

For larger programs, it is not feasible to manually navigate through the dependency graph
history because it is too big. Therefore, a query language should be developed, which makes it
easy to jump to specific points in the history. For instance, it should be possible to define a query
which directly brings oneself to the points in time at which a specific node has been created or
evaluated.

Reactive-Programming-Specific Breakpoints
Developers should be able to set breakpoints specific to reactive programming that stop the
execution when a significant event occurs. For instance, it should be possible to set a breakpoint

20



Client Code
includes shows depen-
— dency graph
Language-Specific visualisation,
Library maybe creates
breakpoints

sends events to

Eclipse Plugin

Figure 3.1.: Overview of the System Architecture

which hits when a specific node is evaluated and the evaluation yields a specific value. These
breakpoints should be easy to express, so that the same query language as mentioned before
should be used.

Language Independence and Extensibility

The system should not be limited to a specific reactive programming language. It should
be independent of any reactive programming language, although there should be a default
implementation for REScaLA. An obvious approach to implement the communication between
the running system and the plugin in a language-independent manner is via a logging file. For
the sake of simplicity, the communication may also be based on a language-specific concept,
such as Java RMI. Since it is just a communication channel, it may be exchanged rather easily
later on.

The query language should be built and defined in a way it can be easily extended. It should
be possible to easily add new commands.

3.2 System Architecture Overview

The overall system design is illustrated in Figure 3.1. There are three important system compo-
nents: First of all, there is the Eclipse plugin which provides the extended debugging func-
tionality for reactive systems. Second, the language-specific library ensures that a reactive
programming language, such as REScaLa is actually supported by the plugin. And as a third
and last component, there is the client code which should be debugged. It has to be writ-
ten in a language for which a language-specific library exists. Otherwise, such a library can
be developed, so that this programming language is supported. In this thesis, an example
implementation for REScaLa has been developed.

The general interaction between the different components is also shown in Figure 3.1. The
client code has to include the language-specific library. This library will send appropriate events
to the Eclipse plugin during the debugging process. These events are then processed by the
plugin. The plugin can then show the dependency graph visualisation, provides possibilities to
navigate it, may create breakpoints and so forth. The next section explains the system architec-
ture in more detail.
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3.3 System Architecture Details

Figure 3.2 shows the system architecture in more detail. The system is splitted into several
projects, which correspond to the boxes in the figure. The language-specific library has to be
added to the build path of the client code which should be debugged. In the case of REScaLa,
this is the REClipse_REScala library. This library implements the logging trait provided by
REScara. The implementing class called REScalalogger has to be plugged into the REScarLa
logging facility like that:

rescala.ReactiveEngine.log = new REScalalLogger

This enables the logging of all events created by REScaLa.

For the communication between the Eclipse plugin and the language-specific library, Java
RMI is used. The REScalalogger class gets an instance of the LoggerInterface class
from the RMI registry and calls methods on this instance each time an event occurs. The
REClipse_LoggerInterface project in general provides common data structures and inter-
faces, so that the language-specific library and the generic Eclipse plugin can communicate
with each other. The language-independent Eclipse plugin is called REClipse_ZestViewer and
implements the logger interface defined in the LoggerInterface project. It provides this imple-
mentation to clients by binding it to the RMI registry. In the plugin, the external library Esper is
used in order to filter and especially match events on-the-fly. Another external library, ANTLR,
is used in order to parse the queries of the query language.

3.4 Dependency Graph Visualisation

As explained in the previous chapter, reactive systems can be visualised with dependency graphs.
Each time-changing value is a node in the graph and there is a directed connection between two
nodes if one node depends on the other one. Consider the already established example extended
by one more variable d:

val a =
val b =
val ¢ =
val d =

N B o

+ b
* C
If a value of a variable is changed, e.g. the value of the variable a is changed to 5, the changes
propagate through the dependency graph along the connections as illustrated in Figure 3.3. This
gives a very good overview of the reactive system and especially of the dependencies therein.
It displays vividly how changing values affect different parts of the application. This should
be of great help for developers to better understand reactive systems. That is why further
investigations regarding the history of dependency graphs have been made in this thesis.

The only problem which may occur is that it does not integrate well with traditional, non-time-
changing variables. These are not shown in the dependency graph, so that the program may
not be fully understood altogether. On the other hand, the developer can still use a traditional
breakpoint-based debugger for the non-reactive part and get a good overview of the reactive
part with the dependency graph history.
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Figure 3.3.: Dependency Graph History Exemplified: Changes Propagate Through the Graph

3.5 Navigation through the Dependency Graph History

The visualisation of the dependency graph is not only instantly updated when the developer
steps through the application, but it is also stored each time it changes. Hence, the developer
is able to navigate through the whole history of the dependency graph. It is possible to see the
dependency graph at any point in time. The developer can navigate through the history in three
ways:

History Navigation
One way is to simply use the back and forth buttons which jump to the point in time directly
before or directly after the current point in time.

Direct Access

Since history navigation may be impracticable for large histories, the developer can also drag
the provided slider and thus quickly jump to arbitrary points in time.

History Queries

A third and last option to navigate through the history is the provided query language. By
entering queries which match certain events, the developer can directly jump to the respective
points in time where these events occurred.

3.6 Reactive-Programming-Specific Breakpoints

Traditional breakpoints are based on specific lines or methods. A line breakpoint hits and halts
the execution each time the code execution reaches a specific line in a specific file. Method
breakpoints hit each time the execution reaches a specific method of a specific class. Both
breakpoint types can also be conditional, which means that they only hit if a specific condition
evaluates to true. These breakpoint types do not really fit well into the reactive programming
approach. Hence, reactive-programming-specific breakpoints should be implemented. They
reuse the developed query language. The developer can enter an arbitrary query, start the
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| IDE | URL to Plugin Directory | Number of Plugins |
Eclipse http://marketplace.eclipse.org/ 1659
IntelliJ IDEA | http://plugins. jetbrains.com/?idea 1187
NetBeans http://plugins.netbeans.org/ 859

Table 3.1.: Most Popular Java IDEs and Respective Number of Plugins, Status: 24-09-2014

debugging session and the debugger will halt the execution each time the query matches. This
feature should be of great help to debug reactive systems.
As an example, consider the following, already established code again:

1 val a =1
2 val b =1
s val c = a + b

A reactive-programming-specific breakpoint using the above code is the query nodeCreated(b).
This breakpoint hits once the variable b is defined. Hence, it halts the execution at line 3.
This could of course still be done with a traditional debugger by creating a line breakpoint at
the respective line. But there are also examples which cannot be expressed with a traditional
debugger. Especially the queries which may have many results are quite handy. For instance,
one does not have to search the code oneself for all places where a specific node is evaluated
and create line breakpoints there, but one could express that with the query nodeEvaluated(c).
Or, as a last example, the evaluationYielded(c, "2") query only matches if the variable c is
evaluated to the value "2".

Unfortunately, this feature partly breaks the programming language independence of the plu-
gin. Breakpoints in Eclipse are debugger-specific. And since there are different debuggers for
different languages, the creation of breakpoints had to be developed for one specific program-
ming language. It has been developed for the Java debugger, so that the plugin depends on
the Eclipse plugin org.eclipse. jdt.debug. This dependency is only used for the breakpoint
creation feature. This dependency definitely has to be fulfilled due to the Eclipse architecture,
but if another debugger is used, only the feature of reactive-programming-specific breakpoints
should fail. The rest of the features should work anyway:.

3.7 Plugin for the Eclipse IDE

The REClipse plugin which is extended in this thesis is already implemented as a plugin for the
Eclipse IDE. But apart from that, Eclipse is a good choice in order to have a highly customisable
and widely used IDE anyway. It is naturally not possible to get real usage statistics of IDEs, but
there are some sources which definitely militate for Eclipse !. The number of plugins officially
available for an IDE may be a good sign for how customisable it is and also how widespread its
use is. And these numbers definitely also militate for Eclipse as Table 3.1 proves.

The implemented plugin integrates into the Eclipse architecture by using extension points.
Extension points are an Eclipse mechanism, which allows to extend the functionality without
editing any Eclipse core code. The plugin uses two extension points, which also serve as two

I gee e.g. https://www.java.net/poll/i-do-most-my-coding-using or http://sdtimes.com/

zeichicks-take-java-java-everywhere/, last accessed 24-09-2014
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examples how Eclipse can be extended with this mechanism. First, a new view is defined, which
can be opened as a tab at various places. In this view, the dependency graph visualisation is
shown. Second, a popup menu is extended in order to add another action to it. This action
enables the visualisation of the dependency graph and opens the respective view.

3.8 Communication via Java RMI

One goal of this thesis was to keep the independence of any specific programming language. In
the base plugin REClipse, which has been extended, this has been achieved through the usage of
the Eclipse extension point API: REClipse needs at least two plugins for proper functionality. One
plugin is independent of any programming language and is only responsible for visualising the
dependency graph. Another, programming language specific plugin has to be developed if a new
programming language should be supported. By default, REClipse supports REScaLa, so that
there is a REScavra-specific plugin which uses the extension point and makes the visualisation
compatible with REScara. When one wants to see the current dependency graph, one clicks
a button. Then, the visualisation plugin will search for an appropriate plugin implementing
the extension point and ask it for the information required to build the graph. Hence, the
visualisation plugin gets a snapshot in-time of the dependency graph. Since the new plugin has
to show the whole history of the dependency graph and not only the current state, this design
decision had to be reconsidered.

The selected solution is not to ask for the required information once the developer wants to
see the dependency graph, but to continuously collect the state of the dependency graph in
the background. This is achieved through continuous logging of relevant events. The whole
communication between the running program and the Eclipse plugin works via Java’s remote
method invocation (RMI) feature. The running program logs relevant events — e.g. when a
time-changing value has been defined or when such a value is evaluated — by calling respective
server methods. The Eclipse plugin, which acts the part of a server here, stores the given event
in the database on each method call. With the stored information, the plugin can construct an
appropriate dependency graph for any point in time. It can then directly show the dependency
graph when the developer wants to see it by reading the information from the database. Using
Java RMI is quite comfortable, because one does not have to care about any low-level concepts,
but it is of course not language-independent. Nevertheless, it is just a communication channel
and exchanging it is pure handwork. It does not contribute anything to the conceptual work, so
that the decision for Java RMI has been made.

An alternative, truly language-independent approach for the communication would have been
to base the communication on log files. That was actually the first idea and has already been
fully implemented, but there is one major drawback of this approach: the communication via log
files is naturally asynchronous, so that the execution of the program continues after an event has
been logged. But in order to support reactive-programming-specific breakpoints, synchronous
communication is needed. Because as soon as such a breakpoint hits, the plugin has to set a
respective traditional line breakpoint in the editor, so that the execution stops. Hence, for the
sake of this breakpoint feature, the decision for synchronous communication via Java RMI has
been made, although this introduces performance and scalability issues.
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3.9 Complex Event Processing (CEP)

The term complex event processing has mainly been shaped in the introductory book “The Power
of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems” by
David Luckham [LucO8]. The idea is that events do not have to be stored in e.g. a classical
relational database and queried afterwards, but to do it the other way round. Hence, queries
are formulated beforehand and when events come in, the queries are directly executed on them.
Events which do not match a specific query can then directly be discarded.

For the use case of this thesis, the events have to be stored anyhow, because it has to be
possible to reconstruct the dependency graph at any point in time. But the usage of CEP is still
possible and advantageous. It is of course feasible to use an event stream built from a relational
database and let the CEP engine run queries on that event stream. And the usage of a CEP
engine makes the system more powerful, flexible and extensible. The CEP engine Esper has
been used in this thesis, because of its industry strength; because it is open source, actively
maintained and easy to use: it is enough to include a few jar files into the project where Esper 2
should be used.

An example for the usage of CEP is the aforementioned reactive-programming-specific break-
points feature. The developer enters a query such as nodeCreated(b) and the execution is
halted once a matching event occurs. Therefore, the incoming events are sent to the Esper CEP
engine which directly executes the query on them and checks if the respective event matches. If
this is the case, the execution is halted.

3.10 Query Language Extensibility

The developer can put a request to the system through a domain-specific query language. For
instance, it is possible to ask the system for the point in time at which a specific node has
been created or evaluated. This point in time will then be shown in the dependency graph
history. In general, there are two possibilities to parse a query — or, to be more specific, to
match a query and read the parameters from it: First, one could simply use regular expressions.
This has the advantage that they are rather easy to implement and that it is not required to
use another library since regular expressions are already supported in nearly all programming
languages including Java. A query which selects events when a specific node is evaluated could
e.g. be defined by nodeEvaluated(nodeName). This query can then be matched by the regular
expression nodeEvaluated\\ (([A)1+)\\).

Another possibility to parse the queries is to use an external library for it. This has the advan-
tage that it is much more powerful. It may be harder to learn in the first place, but the query
language can then be extended much more easily when such a library is used. Besides, the gram-
mar definitions of external libraries are much more readable than a set of regular expressions.
Hence, for the sake of extensibility and readability, an external library is used.

There are various Java libraries out there which generally come into question. The chosen
library should meet the following basic requirements:

* The library should still be actively maintained.

2 nhttp://esper.codehaus.org/, last accessed 24-09-2014
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* Though subjective, the grammar definition of the library should be easy to learn, readable
and rather self-explanatory.

* The code required for matching a query and reading the parameters should be terse.

Three Java libraries seem to be quite established: Xtext, JavaCC and ANTLR. Xtext 3 is a
good candidate, but the grammar definition is not really self-explanatory. JavaCC # is another
candidate, but the grammar definition also takes getting used to. ANTLR 4 °, which is an
abbreviation for “ANother Tool for Language Recognition”, seems to fulfil all of the mentioned
requirements. The grammar definition is quite readable and self-explanatory, as a look on it
in Listing 4.1 reveals. The whole code required for parsing the query is not exactly terse since
ANTLR requires some auto-generated classes, but the code one has to implement oneself is
definitely terse. Additionally, it is also used by Esper and therefore seems to be the perfect
choice in this case.

3
4
5

http://www.eclipse.org/Xtext/, last accessed 24-09-2014
https://java.net/projects/javacc/, last accessed 24-09-2014
http://www.antlr.org/, last accessed 24-09-2014
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4 System Implementation

This chapter is dedicated to the implementation details of the debugger. In the first section,
we present the interface between the plugin and the REScara logger. The second section de-
scribes the implementation details of the generic Eclipse plugin. The implementation of the
REScaLa-specific plugin is explained in the third section. The fourth and last section describes
the graphical user interface provided by the plugin.

4.1 Interface between the Plugin and the REScala Logger

When the developer starts a debugging session, the interface between the plugin and the
REScaLa logger — or potentially any logger — comes into play. This interface is based on Java RMI.
The language-specific logger acts as a client and the plugin acts as a server, because the com-
munication is basically unidirectional. The language-specific logger sends events to the generic
Eclipse plugin, but the Eclipse plugin does not send anything back to the language-specific log-
ger. It only communicates with the user via the graphical user interface and may create Java
line breakpoints, which directly happens in the background via the Java development interface.

Figure 4.1 shows a class diagram of all the classes involved in the communication. For the RMI
setup, the plugin will provide its implementation of the RemoteLoggerInterface to clients by
binding it to the RMI registry. The language-specific logger — in our case called REScalalogger
— can then lookup this remote logger and can call methods on it. When events are sent to
the plugin by invoking methods of the remote logger, the plugin stores the events into a
database and possibly halts the execution if the current event matches the developer’s query.
The common data structures and interfaces for the communication are defined in the project
REClipse_LoggerInterface and further introduced in the following two sections. Since the
LoggerInterface project defines these commonly used structures, it has to be included by the
plugin as well as by the logger.

4.1.1 Significant Data Structures for the Communication

Four important data structures are commonly used by the plugin and the logger:

Reactive Variable Types
In different languages, different types of reactive variables exist. The Java enumeration
ReactiveVariableType defines the possible types:

* VAR: The time-changing equivalent to a primitive value.
* SIGNAL: A time-changing value which can contain arbitrary expressions.
* EVENT: An event definition.

* EVENT_HANDLER: A language construct which handles events.
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Event Types
A Java enumeration called DependencyGraphHistoryType defines all the event types which
may occur:

NODE_ATTACHED: When one node is attached to another, so that a dependency between the
two nodes is established.

NODE_CREATED: When a new time-changing value is defined, so that a new node in the
dependency graph is created.

NODE_EVALUATION_ENDED: When a node evaluation is finished and the node has its new
value.

NODE_EVALUATION_ENDED_WITH_EXCEPTION: When a node evaluation is finished and the
evaluation resulted in an exception.

NODE_EVALUATION_STARTED: When a node evaluation has just been started.

NODE_VALUE_SET: When the value of a node has been set to a specific value.

Information about Reactive Variables
The ReactiveVariable class represents a reactive variable and stores all the relevant infor-
mation. It contains the following fields:

UUID id: A unique ID which identifies this reactive variable.
ReactiveVariableType reactiveVariableType: The type of this reactive variable.

int pointInTime: The point in time of the dependency graph history. Each reactive vari-
able is stored once for each point in time, because properties may change over time.

DependencyGraphHistoryType dependencyGraphHistoryType: The type of event at the
aforementioned point in time.

String additionalInformation: A field for arbitrary additional information. Must con-
tain a string of the form "ID1->ID2" if the current event is of the type NODE_ATTACHED.
This is used in order to detect more easily which connection is currently established.

boolean active: Indicates whether this reactive variable is currently active.

String typeSimple: The simple type of this reactive variable. An example value is
Signal[Integer]. The simple type in square brackets is the respective inner type.

String typeFull: The full type of this reactive variable. @~ An example value is
rescala.SignalSynt[java.lang.Integer]. The full type in square brackets is the re-
spective inner type.

String name: The variable name of this reactive variable in the source code. Especially
important for the usage of the query language, since nodes are there identified by their
name.

Map<String, Object> additionalKeys: A map of additional keys which may be used
freely by each reactive library. For instance, REScaLa stores the level of the reactive variable
in the dependency graph here.
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* String valueString: The current value of this reactive variable as a string.

e Set<UUID> connectedWith: The IDs of the nodes this node is connected with.

Breakpoints

The last important piece of information which has to be transmitted is where exactly a break-
point may has to be created. This information is stored in the BreakpointInformation class.
It only contains three fields which are necessary in order to create a respective breakpoint: The
path to the source code of the class, the name of the class and the line number.

4.1.2 The Remote Logger Interface

The RemoteLoggerInterface defined in the REClipse_LoggerInterface project is a simple
interface which defines all methods which can be called by the language-dependent logger
on the Eclipse plugin implementing this interface. The methods correspond one-to-one to
the event types defined by the DependencyGraphHistoryType enumeration. For instance, for
the NODE_EVALUATION_ENDED event, the respective method is called logNodeEvaluationEnded.
Each time a specific event occurs, the logger will call the respective method which sends this
event to the server. All methods have the ReactiveVariable instance of the currently active re-
active variable as well as a BreakpointInformation instance as parameters. Two methods have
one more parameter each: first, the logNodeAttached method also takes the ID of the newly
added, dependent node as a parameter. Second, the 1logNodeEvaluationEndedWithException
method also takes the respective Exception instance as a parameter.

4.2 Plugin Logic

In this section, we describe selected implementation details of the plugin logic. We introduce
the implementation of the remote logger interface, the deployment thereof as well as the imple-
mentation of the query language.

4.2.1 Implementation of the Remote Logger Interface

The implementation of the RemotelLoggerInterface is the component in the Eclipse plugin
which receives and processes all the events sent by the language-specific library. It uses Esper in
order to directly match the incoming events against the query the developer may have entered.
It is implemented in the generic REClipse_ZestViewer project. The implementing class is called
RemoteLoggerImpl. The sequence diagram in Figure 4.2 gives a rough overview of the interac-
tion between the RemoteLoggerImpl, another internal plugin class called EsperAdapter and the
whole Esper engine from the Esper library. The methods in the RemoteLoggerImpl are called
via Java RMI. These methods first store the new event into the database. The database which is
used therefore is called reclipse and the respective table is called revars. The columns in this
table directly correspond to the fields of the ReactiveVariable class. The database structure is
set up once Eclipse is started.

Afterwards, the Esper engine comes into play in order to implement the reactive-
programming-specific breakpoints. The ReactiveVariable instance, which is a parameter
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Figure 4.2.: Sequence Diagram Visualising the Remote Logger Interface Implementation

of the RMI methods, is sent to the EsperAdapter. If the developer entered a query, the
EsperAdapter now creates and starts an Esper statement which represents this query. Addi-
tionally, the EsperAdapter registers itself as a subscriber to this statement, which means that it
is called by the Esper engine if an event matches this statement. The ReactiveVariable, which
also acts as an event object for the Esper engine, is then sent to the Esper engine. The Esper
engine processes the event and calls the update(pointInTime) method of the EsperAdapter
again if the query matched the current event. The pointInTime given to the update method is
the point in time at which this event occurred.

If the event really matched the query entered by the developer, a traditional line break-
point has to be created, so that the debugger halts the execution at the next pos-
sible place. This is done by the RemoteLoggerImpl via the Java development inter-
face provided by org.eclipse.jdt.debug. The breakpoint is created with the method
JDIDebugModel.createLineBreakpoint (). The information where exactly this breakpoint has
to be created comes from the BreakpointInformation parameter of the RMI method.
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4.2.2 Deployment of the Remote Logger Interface Implementation

So that the language-specific library can call methods on the remote logger interface implemen-
tation RemoteLoggerImpl and therefore send events to it, the implementation somehow has to
be made available to the clients. This is done via an RMI registry. The implementation has to be
provided as early as possible, because it is directly needed when the developer starts a debug-
ging session. Since there is no reliable way to detect the start of a debugging session, the Eclipse
extension point org.eclipse.ui.startup is used. With this extension point, it is possible to
define a class implementing the interface org.eclipse.ui.IStartup whose earlyStartup()
method is called after the workbench has been initialised. In this method, the RMIServer class
which implements the Runnable interface is started. The run() method then basically does the
following:

1. If no security manager has been established yet, a new RMISecurityManager is installed.
Therefore, two system properties are set: first, the java.security.policy property is set,
which defines the path to the server policy file which also comes with the plugin. Second,
the java.rmi.server.hostname is set to the local IP address 127.0.0.1. This should
prevent any RMI security issues.

2. A new instance of the RemoteLoggerImpl class is created.

3. It is tried to create and export a new registry on the default port. If this is not possible
because such a registry has already been exported, an ExportException is thrown. In the
case that this exception occurs, it is caught and the respective registry is read from the
LocateRegistry.

4. Now that there is an instance of the RemoteLoggerImpl and a registry, the instance is
bound to the registry, so that clients can access it via the registry.

4.2.3 The Query Language

With the help of the query language, the developer can query the dependency graph history
for interesting events. As described in the previous chapter, this can be done in two ways.
First, the history can be queried after the program execution in order to find relevant events
more easily. Second, the query can also be entered beforehand, so that the plugin will halt the
execution once a matching event occurs. This is known as the reactive-programming-specific
breakpoint feature. The query language supports six commands for the time being, but can
easily be extended. The single commands are listed and explained in Table 4.1. The query
language is implemented using the ANTLR 4 library, which is comprehensively described in
“The Definitive ANTLR 4 Reference” by Terrence Parr [Par13].

ANTLR 4 grammar definitions are logically structured. At first, a name is assigned to the
grammar, which has to be equal to the file name. Afterwards, all starting with lowercase letters,
the parser rules are defined. They define the high-level structure of the defined language. They
make use of lexer rules, which start with an uppercase letter and which define various datatypes.
Often, lexer rule names are solely written in uppercase letters. The border between parser and
lexer rules is not exactly clear-cut. There are many cases in which the grammar designer has to
decide if a rule should be expressed as a parser or a lexer rule.
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| Command | Parameters | Description |
nodeCreated(name) name: a name of a node specific node is created
nodeEvaluated(name) name: a name of a node specific node is evaluated
nodeValueSet (name) name: a name of a node value of a specific node is set
dependencyCreated(namel, name2) namel/name2: names of nodes dependency between 2 specific nodes is created

name: a name of a node
value: a String (!) value, such as "value"
evaluationException(name) name: a name of a node evaluation of specific node throws an exception

evaluationYielded(name, value) evaluation of specific node yields specific value

Table 4.1.: Commands of the Query Language

In the Reclipse grammar, the decision between parser and lexer rules was quite straightfor-
ward, because it is a rather simple language. The grammar is shown in a shortened form in
Listing 4.1. It should be — especially together with the commands in Table 4.1 — understandable
as is. In lines 1-16, the grammar name and the parser rules are defined. This already covers the
important parts of the language. Lines 17-19 contain parts of the lexer rules. The language has
been designed so that the NODE_NAME rule matches the usual identifiers in modern programming
languages. The VALUE matches any String value enclosed in quotes, such as "String value".
Hence, the definitions have been taken from the official ANTLR 4 grammar for Java !. These
definitions take about 70 lines, so that they are omitted here. The last line only claims that all
whitespace in between the different parts of the query are ignored or “skipped”.

grammar Reclipse;

query: nodeCreatedQuery
| nodeEvaluatedQuery
| nodeValueSet
| dependencyCreated
| evaluationYielded
| evaluationException;

nodeCreatedQuery: ’'nodeCreated (’ NODE NAME ')’ ;
nodeEvaluatedQuery: ’'nodeEvaluated (’ NODE NAME ’)’ ;
nodeValueSet: ’nodeValueSet(’ NODE NAME ’)’ ;

dependencyCreated:
evaluationYielded:

evaluationException:

NODE NAME: Identifier
VALUE: StringLiteral

// definitions of the Identifier and StringLiteral rules omitted

WS: [ \t\r\n\uOOOC]+ — skip ;

auto-generated by ANTLR. The lexer and the parser just tokenise and parse the code in a proper

"evaluationException (° NODE NAME )’ ;

J

J

Listing 4.1: ANTLR 4 Grammar for the Query Language

"dependencyCreated (° NODE NAME ’,’ NODE NAME ’)’
"evaluationYielded (° NODE NAME ’,’ VALUE ')’

>

b

Defining the grammar in a standardised and readable format is one contribution of ANTLR.
But what makes the query language usable are the parser, lexer, visitor and listener which are

1

https://github.com/antlr/grammars-v4/blob/master/java/Java.g4, last accessed 24-09-2014
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way, so that it can be processed further. Visitors and listeners can then do something with the
parsed code. As written in the reference book, the “biggest difference between the listener and
visitor mechanisms is that listener methods are called by the ANTLR-provided walker object,
whereas visitor methods must walk their children with explicit visit calls. Forgetting to invoke
visit() on a node’s children means those subtrees don’t get visited.” [Par13]. Since we want to
have full control over the visited parts of the code and since they are rather simple to implement,
a visitor is used for processing the query language code. A typical control flow between the lexer,
the parser and a visitor looks like the following:

ReclipselLexer lexer = new ReclipseLexer (
new ANTLRInputStream ("nodeCreated (f1)")
);
CommonTokenStream tokens = new CommonTokenStream(lexer);
ReclipseParser parser = new ReclipseParser (tokens);

ParseTree tree = parser.query();
ReclipseVisitorMySQLImpl visitor = new ReclipseVisitorMySQLImpl ();
String conditions = visitor.visit (tree);

In this case, the visitor is implemented so that it returns a String. But visitors as well as listeners
are generic, so that they can return any type of data. Here, the visitor translates the query into
MySQL conditions. There is also another implementation called ReclipseVisitorEsperImpl,
which translates the query into Esper conditions. These conditions can then be used in order to
write MySQL queries or Esper statements with the respective conditions.

4.3 REScala Logger

In this section, we describe selected implementation details of the REScarLa logger. We explain
the already existing logging functionality of REScaLa, the implementation of the logging class
as well as the retrieval of the logged data.

4.3.1 The Logging Classes

So that the Eclipse plugin can visualise the dependency graph and provide the discussed func-
tionality, it depends on the events which are sent to it. Therefore, a language-specific library,
such as REClipse_REScala has to be able to get these events from the reactive language some-
how. Fortunately, REScarLa already provides such a logging functionality, which was quite handy
for this thesis. All the events used in this thesis are covered by this logging functionality.
Some of them have been revised or added to the REScara code base during the develop-
ment of this thesis though. The logging functionality in REScara is implemented in the file
rescala.log.Logging.scala. In this file, a trait called Logging is defined which contains all
methods required for the logging events. Additionally, an implementation of this trait which
does not log anything at all is provided. This implementation called NoLogging is used as a
default by REScara. If one wants to do something with the log events, one has to implement
its own class implementing the Logging trait. So that the custom logging implementation e.g.
called MyCustomLogger is used, the code in which the events should be logged has to include
the following line:
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rescala.ReactiveEngine.log = new MyCustomLogger

The implementation of the logger used by this thesis is called REScalaLogger. It basically just
creates instances of the ReactiveVariable and BreakpointInformation classes which contain
all the important information and then calls the respective RMI methods. The Eclipse plugin
then receives these RMI calls and can process the given events. So that the respective methods
can be called via Java RMI, the implementation of the RemoteLoggerInterface has to be read
from the RMI registry. The steps in order to get this implementation are quite similar to the
process of providing the implementation to the clients on the server-side:

1. If no security manager has been established yet, a new RMISecurityManager is installed.
Therefore, two system properties are set again: first, the java.security.policy property
is set, which defines the path to the client policy file. This file is also included in the
REClipse_REScala project. Second, the java.rmi.server.hostname is set to the local IP
address 127.0.0.1 again.

2. The implementation of the RemoteLoggerInterface is looked up from the RMI registry.

4.3.2 Logged Data

When the developer debugs a program, events of the reactive language have to be logged.
As written in the previous section, the REScalalogger therefore creates instances of the
ReactiveVariable and BreakpointInformation classes in order to store all the relevant data
and sends it to the Eclipse plugin. This section explains how this data is retrieved.

The log methods called by REScara get the respective Reactive instances as a parameter.
From this instance, the according ReactiveVariable instance can be created. The unique ID
can directly be read from the Reactive instance by reading out the public id field. The inner
type and value strings can only be read from Signal instances, so that the Reactive is cast
accordingly and the values are read from the Signal instance if possible. The short and long type
names of the Reactive are constructed via Java’s Object.getClass() method. The variable
name is read by an external class called SrcReader, which is introduced in the next section.
As a last important field, the connectedWith field of the ReactiveVariable has to be filled
correctly. Therefore, the Reactive is cast to a DepHolder instance if possible. If this is the
case, the connections can be read out through the public dependents field and added to the
ReactiveVariable accordingly.

The BreakpointInfomation class contains three fields: the path to the source file, the name
of the class and the line number. The class name as well as the line number are constructed by
analysing the stack trace. From the stack trace of the current thread, all calls on classes from
the current project or from the Java, Scala or REScata library are ignored. The first stack trace
element which calls a method from a class outside of these libraries is the relevant element for
us. It represents the point in the source code where the respective reactive variable is defined or
used in some way. The place where the breakpoint may have to be set is exactly one line after
it. The path to the respective source file is already constructed by the SrcReader class and can
be read out from it. In the next section, this SrcReader is explained a bit further.
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4.3.3 Retrieving the Variable Names

Variable names are indispensable for the plugin since the developer has to be able to easily see
which node in the graph represents which variable in the program. Additionally, the variable
names are indispensable for writing the code to query the dependency graph. Unfortunately,
getting the variable names of a running program is not easy at all. Variable names are usually
removed by the compiler and the Java reflection API does not provide any possibility to get
them. The only proper solution seems to be to parse the source code and read the variable
names directly from the code. This is what has been done in this thesis. The code is originally
from Gerold Hintz who wrote it for a logging application.

The idea is that a specific method is called as soon as a time-changing value is defined. Then,
the stack trace will be analysed in order to get the information in which file and in which line
this value is defined. The source file is then read and in the respective line, the variable name is
extracted via a regular expression. For performance reasons, this is only done once per source
file and the results are cached accordingly. In order to make that work, the singleton pattern is
used, which is natively supported by Scala via the object keyword. Through Scala’s comfortable
and compact language constructs, the class which implements this idea is only around 80 lines
long. That is enough to read the respective variable names.

4.4 Graphical User Interface

The graphical user interface of the plugin is an Eclipse view which can be opened in a new
tab during the debugging session. The GUI is basically divided into two main parts as shown
in Figure 4.3. It can be activated by right-clicking a variable in the debug view and selecting
the action “Open Reactive Tree”. Then, the respective view will be opened in a new tab. The
first main part of the view just shows the dependency graph and provides some basic actions to
do something with it and manipulate it. This is mainly the functionality which already worked
before: the developer sees the dependency graph, can move nodes around and additional infor-
mation to the nodes can be shown if the developer hovers with the mouse over a specific node.
One can choose different layout algorithms which organise the nodes in different manners. The
current visualisation can also be stored in a png-file. Zooming functionality is also provided.

These features have been extended: Nodes can now be collapsed and extended. If the de-
veloper double-clicks on a node, the status of the node is toggled — if it has previously been
collapsed, it is extended and vice-versa. If a node is collapsed, all child nodes of this node are
recursively hidden. This can make the dependency graph way more clear. If the developer is not
interested in a specific part of the graph, this part can easily be hidden with this feature. Besides,
the graph can now be moved directly with the mouse. Before, one had to use the scrollbars in
order to move the graph around. Now, one can just click on some free whitespace and the graph
will move proportionally to the mouse movement.

The second part of the view is the main contribution of this thesis. It provides the possibility
to navigate through the dependency graph history and to query it. The slider provides a simple
possibility to navigate through the history by dragging it. The dependency graph will then be
instantly updated and shows the state of the graph at the respective point in time. Below the
slider, the developer can enter the queries explained in Section 4.2.3. If a valid query is entered
and the enter key is pressed or the “Submit Query” button is pressed, the visualisation will jump
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Figure 4.3.: Screenshot of the GUI

to the first point in time at which the entered query matches. The arrow keys let the developer
then navigate through the different matched points in time if applicable. If no matching results
are found, a respective message is shown in a pop-up.

The visualisation of the dependency graph is based on Zest 2, a visualisation toolkit from

Eclipse. It is a sub-project of the graphical editing framework named GEF, which is a more
general toolkit to create rich graphical editors and views. Zest makes it quite straightforward
to visualise graphs in Eclipse. Since its modelling has been orientated towards the Eclipse-
standard, it integrates seamlessly into the Eclipse GUI. A discussion of the reasons for choosing
Zest over other graph visualisation tools can be found in the thesis of Michael Hausl [Haul4].
The containers, buttons and different actions are naturally based on Eclipse SWT 2, the open
source standard widget toolkit used throughout Eclipse.

2
3

http://www.eclipse.org/gef/zest/, last accessed 24-09-2014
http://www.eclipse.org/swt/, last accessed 24-09-2014
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5 Evaluation

In this chapter, various case studies are introduced which demonstrate the use of the plugin.
They have been chosen in order to illustrate the most important features of the plugin and
therefore the contributions of this thesis. They are all written in REScALA.

For the sake of brevity and clarity, we skip the package and import declarations in the code
examples in the next sections. The required imports are shown in Appendix A. The first section
basically shows how the plugin already worked before — it could visualise reactive systems by
showing the respective dependency graph. The second section exemplifies the first contribution
of the thesis: it shows how the dependency graph history helps in understanding reactive sys-
tems. The developer can observe the evolution of the shape of the graph as well as the change
propagation. The third section illustrates how bugs can easily be found by using the developed
query language. The fourth section then explains how the reactive-programming-specific break-
point feature can help to find bugs even faster under certain circumstances. The sections five
and six show again how bugs can quickly be found. Once primarily with the help of the visuali-
sation and once primarily with the help of the query language. The last section summarises and
concludes the evaluation.

5.1 Visualisation of the Dependency Graph: The Fibonacci Example

The Fibonacci numbers with the calculation procedure F, = F,_; + F,_, and the start values
F; = 1,F, = 1 are commonly known. Due to the high number of regular dependencies, it is a
nice example to show the visualisation feature of the Eclipse plugin as depicted in Figure 5.1.
It shows one node for each variable. Var instances are shown in yellow, Signal instances in
orange. Currently active nodes are green. There is a directed edge between a node x and
another node vy if the value of x has a direct influence on the value of y. For instance, the value
of £1 as well as the value of £2 have a direct influence on the value of £3, so that there is a
respective edge in each case. The respective source code which defines the first ten Fibonacci
numbers in REScaLa is rather terse:

object FibonacciExample extends App {
rescala.ReactiveEngine.log = new REScalalogger

val f1 = Var(1l)
val f2 = Var(1l)

val f3 = Signal { f1() + f2() }
val f4 = Signal { f2(0) + f3() }
val f5 = Signal { f3 () + f4() }
val f6 = Signal { f4() + f5(0) }
val f7 = Signal { f5(0) + f6() }
val f8 = Signal { f6 () + f7() }
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Figure 5.1.: Dependency Graph Visualisation of the Fibonacci Example

val f9 = Signal { f7() + f8() }
val f10 = Signal { f8(0) + f9(0) }
println (f10. get)

f1.set(2)

println (f10. get)

f2.set(5)

println (f10. get)

}

This example illustrates how the plugin helps to get a rough overview of a reactive system. If
dependent variables stretch over multiple files and classes and one does not know the system,
this is a great possibility to understand the reactive system without the need to study the whole
source code.

5.2 Navigating through the Dependency Graph History

One of the contributions of this thesis is the storage of the whole dependency graph history
and the possibility to navigate through it. The basic navigation is done via a simple slider as
shown in Section 4.4. With this navigation feature, one can observe two important aspects
of the reactive system: first, one can observe the evolution of the shape of the dependency
graph. One can see how nodes are created and how dependencies are established. Second,
one can observe how changes propagate through the dependency graph. Both features help
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Figure 5.2.: Evolution of the Shape of the Dependency Graph

to comprehend the execution of the reactive system step-by-step. Doing this with a traditional
debugger would potentially mean that it jumps around in the source code, so that one cannot
comprehend the steps at all. With the help of the dependency graph visualisation, the steps are
easily comprehensible and shown in a more natural format. The two features are exemplified
with the example we already introduced in the previous chapters:

object SimpleExample extends App {
rescala.ReactiveEngine.log = new REScalalLogger

val a = Var(1)

val b = Var(1)

val ¢ = Signal { a() + b() }
val d = Signal { 2 » c() }
println (d. get)

a.set(5)

println (d. get)

Evolution of the Shape of the Dependency Graph

The evolution of the shape of the dependency graph is visualised in Figure 5.2. In the first
three steps, the three nodes a, b and c are created. Then, the dependency between a and c as
well as the dependency between b and c are established in the fourth and fifth step resulting
in the evaluation of c. In the last step, node d is created, connected to c and evaluated. Some
steps like the start and end of node evaluations have been omitted for the sake of better clarity.
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Figure 5.3.: Change Propagation in the Dependency Graph

Change Propagation in the Dependency Graph

The propagation of changes in the dependency graph is visualised in Figure 5.3. The first step
is the same as the last one from the previous example. In the next three steps, the propagation
of the value change can easily be observed. At first, the node a changes its value to 5. Then, this
change is further propagated and also c reflects the recent change, so that its value changes to
6. In the last step, the value change arrived at node d and its value is updated to 12. Some steps
have again been omitted for the sake of better clarity.

5.3 Querying the Dependency Graph History: The File Example

In the following example, we show how the developed plugin supports the developer to directly
find a bug in a reactive system. First, we execute the program and then we query the dependency
graph history. In the next section, we basically do the same, but define the query in advance
in order to use the reactive-programming-specific breakpoint feature. The source code for this
example is the following:

class FileExample {

rescala.ReactiveEngine.log = new REScalalLogger

43



12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

val dir: Var[String] = Var(null)
val filename: Var[String] = Var(null)
val path = Signal {
if (dir() !'= null && filename () !'= null) {
dir.get + filename. get
} else {
null
}
}
def setDir(theDir: String) {
dir.set(theDir)
b
def setFilename (theFilename: String) {
if (theFilename.endsWith("txt")) {
filename.set (theFilename)
} else {
filename.set (null)
}
¥
def getFile (): File = {
new File (path. get)
b

¥
object FileExample extends App {

val fe = new FileExample
fe.setDir ("/tmp/")
fe.setFilename ("something. txt")
val f = fe.getFile ()

fe.setFilename ("something.log")
val f2 = fe.getFile ()

The idea is that there is a class called FileExample with which files can be created. The
directory and path can be defined separately and will be constructed to a full path with a Signal
expression. The problem is that the setter for the file name only accepts file names which have
a txt ending. If it does not have a txt ending, it sets the file name to null, which may finally
result in a NullPointerException once the File instance is created.

When the program is executed, a NullPointerException is thrown. From the stack trace,
the developer will see that the problem lies in line 25, because the path variable is null. Fur-
thermore, he will see that this is the case when line 36 is executed. Hence, he sets a breakpoint
before line 36 and looks at the dependency graph history. Since the problem is that the path
variable is null, he can enter the query evaluationYielded(path, "null"). There are multiple
results for this query, but of course the last result is the relevant result in this case. Navigating
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Figure 5.4.: Finding the Bug in the File Example

from this result back and forth the history, he sees the evolution depicted in Figure 5.4 and soon
realises that the filename variable is the real problem. It is for some reason set to null, so that
the path is also null. Having a look at the filename setter then directly reveals the problem: it
only accepts txt files, but it is used with a log file in this case. Hence, the developer can either
use the class only with txt files or he can fix the class to also accept other file types.

5.4 Reactive-Programming-Specific Breakpoints: The File Example Revisited

For fast-running programs, it is not really a problem to execute them first and then define and
execute queries on the results. But certainly in situations where programs take minutes or
hours to execute, it is extremely important to be able to have the possibility to define queries
beforehand and the debugger halts the execution once a matching result occurs. This feature has
been discussed before as the reactive-programming-specific breakpoints feature. We illustrate
that with the file example introduced above again. Before the program is executed, the query
evaluationYielded(path, "null") is entered. Then, the debugger is started as before. It will
then halt the execution each time the evaluation of the variable path yields the value null.
The developer then directly sees that this is the case when the filename or dir variable is
null. Especially, he sees that at the problematic step, the path evaluates to null, because the
filename is null. He sees exactly the same steps as shown in the previous section in Figure 5.4.
Hence, he looks into the filename setter and sees that only txt files are accepted. He not only
finds the bug, but got a much better overview of the whole system.

5.5 Finding Bugs with the Visualisation

The two examples introduced in this section show how the visualisation part of the system
helps in finding bugs in reactive applications. The second example additionally shows that the
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system works flawlessly together with REScara’s conversion functions, which create Signals
from Events and vice versa.

5.5.1 The Logging Example

The logging example shows how the visualisation feature of the plugin can help in finding a
typical bug in a reactive system. Additionally, it shows that events as well as event handlers are
also visualised in the dependency graph. The source code for this example is the following:

object LoggingEventExample extends App {

rescala.ReactiveEngine.log = new REScalalLogger
object LoggingModulel {
val err = new ImperativeEvent[String]
def sth() = {
// simulate that an error occurs sometimes
if (Math.random() < 0.2) {
err ("An_error_occurred_in,_LoggingModulel")
¥
42
¥
¥
object LoggingModule2 {
val err = new ImperativeEvent[String]
def sthElIse() = {
// simulate that an error occurs sometimes
if (Math.random() < 0.2) {
err ("An_error_occurred_in,_LoggingModule2")
¥
"Answer_to_the_Ultimate_Question_of_Life ,_the_Universe"
+ "and_Everything"
}
¥
val err = LoggingModulel.err || LoggingModule2.err
// developer erroneously attached the log handler only to the err
// event of the LoggingModulel, not to the combined event
LoggingModulel.err += { s => println ("ERR:_," + s) }
// just some sample calls
var i = 0
for (i <— 1 to 30) {
LoggingModulel.sth ()
LoggingModule2. sthElse ()
¥
by
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Figure 5.5.: Dependency Graph Visualisation of the Logging Example

In this example, two modules provide an event which is fired each time an error occurs. The
developer wants to do something with these events, e.g. logging them by printing them to the
console. Therefore, he attaches a respective event handler to the events. But he erroneously
attaches this log handler only to the first module’s event. This could just be a careless mistake,
but there are also other possible explanations. Maybe there was only one module at first and the
developer added the second one afterwards. He implemented the combined event in line 26,
but did not change the event handler attachment in line 30 accordingly.

So the developer wonders why only errors of the first module are logged and there are no
entries from the second module. In order to find the bug, he has a look at the dependency
graph depicted in Figure 5.5. This visualisation directly reveals that the event handler is only
attached to one of the error events and not to the combined event. The bug is then easily fixed
by simply changing line 30 to err += { s => println("ERR: " + s) }.

5.5.2 The Bouncing Example

The example discussed in this section is basically taken from the “official” REScaLa examples ®.
It is a graphical application which, if implemented correctly, shows a ball bouncing off the edges
of a specific area as shown in Figure 5.6. This is an example where reactive programming may
be helpful in the development of reactive animations or graphical user interfaces. The source
code for this example, which includes a tiny, but unpleasant bug, is the following:

object BouncingExample extends SimpleSwingApplication {
rescala.ReactiveEngine.log = new REScalaLogger

lazy val application = new BouncingExample
def top = application.frame

override def main(args: Array[String]) {
super.main(args)
while (true) {
Swing onEDTWait { application.tick() +=1 }
Thread sleep 20
}

1 https://github.com/guidosalva/REScala-examples, last accessed 24-09-2014
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(1) Ball Moving Downright (2) Ball Bouncing off the Edge (3) Ball Moving Bottom Left

Figure 5.6.: Screenshots of the Bouncing Example

14 }

15}

16

17 class BouncingExample {

18 val Size = 50

19 val Max X = 300

20 val Max Y = 300

21 val initPosition = new Point (20, 10)
22 val speed = new Point (10, 8)

23 val tick = Var(0)

24

25 // Signals for x and y position

26 // entirely functionally dependent on time (ticks)
27 val x = Signal {

28 val width = Max X — Size

29 // erroneously, tick.get instead of tick() is used here

30 val d = speed.x = tick.get + initPosition.x

31 if ((d / width) % 2 == 0) d % width else width — d % width
32 }

33 val y = Signal {

34 val width = Max Y — Size

35 val d = speed.y » tick() + initPosition.y

36 if ((d / width) % 2 == 0) d % width else width — d % width
37 }

38

39 tick .changed += ((_: Int) => frame.repaint)
40

4 // drawing code

42 val frame = new MainFrame {

43 contents = new Panel() {
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Figure 5.7.: Dependency Graph of the Faulty Bouncing Example

preferredSize = new Dimension(Max X, Max Y)
override def paintComponent(g: Graphics2D) {
g.fillOval(x.get, y.get, Size, Size)
¥
}
¥
¥

In line 30, the developer erroneously used the method tick.get instead of using the correct
form tick (). The tiny, but important difference is that tick.get does not create a dependency
between tick and the variable d, so that d and therefore the x value of the position is not
automatically updated each time tick changes. A dependency is only created when tick() is
used.

We selected this example for two reasons. First, it shows again how the dependency graph
visualisation can help to find bugs in an application. A look at the dependency graph as shown
in Figure 5.7 reveals that x definitely lacks a dependency on the tick value. It immediately
looks faulty that y has a dependency on this value and x does not have any dependency at all. A
look into the definition of x and the comparison to the definition of y then reveals that tick()
instead of tick.get should have been used in line 30. Additionally, if the developer navigates
through the dependency graph, he directly sees that only the y value is updated each time the
contents of the frame are painted again.

Second, the example shows that the system works flawlessly with REScara’s conversion func-
tions. In this case, the conversion function changed is used in line 39. It simply converts a
Signal into an Event and fires each time the Signal changes its value. The thereby created
Event is also shown in the dependency graph. All Vars, Signals or Events, no matter if created
directly or created via one of the conversion functions, are shown in the dependency graph.
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5.6 Finding Bugs with the Query Language: The External Library Example

This section introduces an example in which a traditional debugger fails short. Instead, devel-
oped debugger makes it easy to find the included bug. Therefore, we simulate the situation that
we want to use an external reactive library which is badly documented and we do not want or
do not have the time to have a look at the internals. Hence, we use the external library in a way
we think it is supposed to be used as shown in the following source code:

class ExternalLibrary {

private[this] val v = Var(1)
private[this] val s = Signal { v() + 2 }
def getSVal(): Int = s.get
def setV(newVarVal: Int) {
v.set (newVarVal)
}
// other stuff
}

object ExternallLibraryExample extends App {
rescala.ReactiveEngine.log = new REScalalogger

// assuming s and v are unrelated
val t = new ExternalLibrary
println(t.getSVal()) // prints "3"
t.setV(20)

println (t.getSVal()) // prints "22"

The library provides, besides other things, a getter for a variable s, which is a Signal and
a setter for a variable v, which is a Var. The developer thinks that these variables are com-
pletely unrelated and hence uses them accordingly. But then he encounters the problem that
the returned value of s changes unexpectedly. With a traditional debugger, one cannot really
do something — since reactive programming abstractions are not supported, one cannot com-
prehend why the value of s changes. But with the developed debugger, the developer can set
a breakpoint in line 21 and have a look at the dependency graph. He would directly see that
there is a dependency between v and s, so that it is clear that v has an influence on the value
of s. But more specifically, he could jump to the relevant point in time where s evaluates to 22
by executing the query evaluationYielded(s, "22") on the dependency graph history. Navi-
gating back and forth the history, the developer would see the evolution as shown in Figure 5.8
and would then quickly realise that s changed because of the value change of v. He then knows
why the problem exactly occurs and can further analyse the issue by e.g. checking how exactly
the two values depend on each other.
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Figure 5.8.: Finding the Bug in the External Library Example

5.7 Summary of the Evaluation

The preceding evaluation illustrated with the help of various examples what the contributions
of this thesis are. We showed how the developed debugger can be used in order to find bugs in
reactive applications more easily and more quickly. Additionally, we showed how the visualisa-
tion can help in getting a good overview of a reactive system and understand its internals at a
glance.

Of course we tried to keep the examples manageable, so that they can be fully included, read
and understood. That is why they suffer from the problem that they are somewhat artificial
and the introduced bugs and problems may seem obvious. But these problems may not be
obvious at all when they occur in bigger systems that are not so easy to overview. The reader
should imagine that these bugs are usually “hidden” in big systems with countless lines of code,
which one usually did not write oneself. Hence, an absolutely worthwhile direction for future
work is to apply the debugger in the everyday developer life and thoroughly test it on bigger
applications. This and also other directions for future work are outlined in the next chapter.
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6 Conclusion and Future Work

In this chapter, the thesis is concluded by shortly summarising the main contributions. Addition-
ally, various ideas for future work are introduced, so that the development can proceed without
any break.

6.1 Final Remarks

The developed system is based on an already existing Eclipse plugin called REClipse, which
already provides the functionality to visualise dependency graphs. The contribution of this
thesis is to extend this functionality with the history of the dependency graph and thus develop
an advanced debugger for reactive programming.

With the system developed in the thesis it is possible to visualise the whole history of the de-
pendency graph and simply navigate through it with the help of a slider. Additionally, advanced
methods to navigate the history have been developed. A domain-specific query language pro-
vides the possibility to formulate queries on the history and directly jump to relevant points
in time. Moreover, reactive-programming-specific breakpoints have been developed. They al-
low to halt the program execution as soon as a relevant event occurs. These events are again
formulated by the developed query language.

As shown in the evaluation, advanced debugging mechanisms for reactive programming have
the potential to ease the development of reactive systems. Not only can reactive systems be
overseen more easily, but bugs can be found easier as well. This still needs to be verified in
case studies, which is one possibility for future work. Many ideas for further improvements are
introduced in the next and also last section.

6.2 Outlook

Since the development of debugging tools for reactive programming is still in its infancy and
this thesis is just one of the first approaches, there are various options for future work:

Plugin Implementation

Regarding the implementation of the plugin, a good idea would be to tackle the scalability
issues. Since the plugin heavily depends on synchronous communication via Java RMI, it does
not scale very well for big applications with many and highly involved time-changing values.
One could replace Java RMI by other concepts, such as CORBA ! or sockets for performance
reasons and in order to make the plugin more language-independent. Furthermore, the query
language could be extended to support more commands. One obvious idea would be the pos-
sibility to combine already existing commands with logical operators in order to create more
advanced commands. For instance, this would give the developer the possibility to define a
query which fires each time a specific variable is activated — no matter if it is created, evaluated,

or whatsoever.
1

http://www.corba.org/, last accessed 24-09-2014
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Additional Features
The biggest area for possible improvements are new features. Here is a non-exhaustive list of
ideas:

* A scoping feature could reduce the complexity of the dependency graph history, so that it
is easier for the developer to figure it out and to get a good overview. It would provide the
possibility to exclude certain classes or packages to generate any events or the possibility
to explicitly define which classes or packages should generate events exclusively. Another
scoping idea would be to exclude certain event types beforehand so that they are not
logged at all. For instance, it may be advantageous to be able to ignore all events fired
when nodes are created or attached. This would also improve the performance of the
debugging execution.

* It may be helpful to have some form of bookmarking feature. If the developer is interested
in one specific point in time of the dependency graph history, it may be helpful if it can be
bookmarked for easier future access.

* A great help would be to improve the debugger in order to make it a so-called “edit-and-
continue debugger”. This would give the developer the possibility to change values in
the dependency graph on-the-fly and continue the execution of the program afterwards.
Adding or deleting certain nodes on-the-fly could also be interesting.

* The plugin could also provide great assistance with performance analysis. It would be very
helpful to visualise the number of times a node is evaluated or the amount of time these
evaluations take. This could be visualised with colours in different brightnesses. The mean
time needed for evaluating a node could be shown in the node or via an overlay. This
would easily and comfortably provide relevant performance information.

* It may be helpful to have the possibility to navigate directly from the dependency graph to
the code. A double click on a node could e.g. directly open the respective place in the code
where the respective variable is defined.

Case Studies and Evaluation

Another area for possible improvements are case studies and evaluation. It would be good
to inspect how the plugin helps developers to understand reactive systems and to find bugs in
them. How is the plugin exactly used? Does it really help the developers to better understand
reactive systems? Does it really help to find bugs in them? With the help of user surveys, one
could also discover further ideas for future work. Developers who work with the plugin on a
daily basis will surely have various ideas for new features. Additionally, user surveys could help
to prioritise the features mentioned in the last paragraph, so that the features most important
to the developers are developed first.
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A Imports for the Code Examples

For the sake of brevity and clarity, import and package declarations have been omitted
in the source code examples. All examples from the evaluation chapter reside in the
de.tu_darmstadt.stg.reclipse.examples package. The following import declarations are
valid for all examples:

import de.tu darmstadt.stg.reclipse.rescala.REScalalLogger
import makro.SignalMacro.{ SignalM => Signal }
import rescala.Var

The first line includes the language-specific logger from the imported REClipse_REScala
project, so that it can be plugged into the logging facility of REScara. The second line en-
ables the usage of Signals and the last line enables the usage of Vars.

Some examples require some more imports, such as the BouncingExample which requires
some Swing and AWT imports or the LoggingEventExample which also imports the required
event rescala.events.ImperativeEvent. Since these imports are rather obvious, they have
been completely omitted.
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